Структура и электрические свойства на переменном токе титанфуллереновых пленок

Шпилевский Э.М.¹, Филатов С.А.¹, Филатова О.С.¹, Замковец А.Д.², Шилагарди Г.³, Улам-Оргих Д.³, Тимур-Батор Д.³, Мунхцецег С.³, Эрдэнэбатор Д³, Тувшинтур П.^{3*}

¹ Института тепло- и массообмена им. А.В. Лыкова НАН Беларуси, г Минск, Республика Беларусь ² Институт физики им. Б.И.Степанова НАН Беларуси, г Минск, Республика Беларусь ³ Национального университета Монголии, Улан-Батор, Монголия

Фуллерены благодаря способности структурировать прилегающие к ним молекулы, обеспечивают многообразие возможных конструкций элементов структуры, выступают инструментом формирования новых материалов [1]. Перспективы использования фуллеренсодержащих материалов в микро- и наноэлектронике выдвигают задачи всестороннего исследования свойств сплавов фуллеренов с широко применяемыми материалами. Более двух третей всех химических элементов являются металлами. Согласно [1-3], взаимодействие молекул С₆₀ с атомами металлов приводит к высокой дисперсности структуры, в некоторых случаях к образованию новых фаз. Это сопровождается существенным изменением свойств исходных материалов, в том числе концентрационной зависимости удельного сопротивления. Поскольку многие устройства микроэлектроники работают на переменном токе, то понимание процессов переноса электрического заряда на разных частотах является важным как с теоретической, так и с практической позиций.

Целью настоящей работы являлось исследование структуры и полного электрического сопротивления пленок титан-фуллерен, содержащих разное соотношение компонентов пленок титан-фуллерен.

ПОЛУЧЕНИЕ ОБРАЗЦОВ И МЕТОДИКИ ИССЛЕДОВАНИЙ

Титан-фуллереновые материалы в виде тонких плёнок получали в вакууме при остаточном давлении воздуха не более 1×10⁻⁴ Па. При этом, сублимации учитывая, что температура фуллеренов составляет порядка 700К, что значительно ниже температуры испарения титана, использовали два испарителя, разогрев которых обеспечивали пропусканием электрического тока. В качестве испарителя для титана применяли «лодочки» из молибдена, для С₆₀ – из тантала Получение пленок с различным содержанием фуллеренов достигалось путем варьирования плотностью атомно-кластерных потоков компонентов, что обеспечивалось регулированием температуры испарителей, а так же изменением их расположения относительно подложки. Плотность потока из фуллеренового испарителя контролировалась термопарой, а титанового по току через испаритель и по скорости изменения сопротивления контрольного образца.

Образцы для электрических измерений изготовлялись на ситаловых подложках

размером 60×48×0,6 мм наносились четыре контактные площадки по длине подложки на расстоянии 10 мм друг от друга. Контактные напылялись площадки через маску И представляли собой трёхслойную структуру медь с подслоем хрома и буферным слоем из титана. Толщины слоев контактных площадок Cr-Cu-Ti составляли 80, 300 и 100 HM соответсвенно. Поверхностное сопротвление не превышало 0,4 Ом/п. Титан – фуллереновый слой заданного состава осаждался на всю поверхность подложки. Образцы получали ширине скрайбированием подложки по 5 алмазным резцом с шагом MM перпендикулярно контным площадкам. При измерениях контактирующая измерительная ячейка, содержащая пружинные прижимы, подсоединялось к измерительному прибору штатным кабелем.

Исследование частотных свойств титанфуллереновых плёнок проводилось на измерителе импеданса ВМ507 ТЕСLА в диапазоне частот от 50 Гц до 600 кГц.

Исследование микроструктуры проводилось на атомно-силовом микроскопе "Nanoscope IIIA".

^{*} Electronic address: tuvshintur@num.edu.mn

Фазовый состав пленок исследовали на автоматизированном рентгеновском комплексе на базе дифрактометра ДРОН-3М. С целью обеспечения более надежной информации о составе формируемых покрытий рентгеновскую съемку подложки и образцов с покрытием проводили широком интервале углов рассеяния и более точно в двух интервалах: $2\theta = 8-27$ град и $2\theta = 34-42$ град. в режиме сканирования при времени набора импульсов в каждой точке 30 с.

СТРУКТУРА Ті-С₆₀

Структура поверхности пленок Ti- C_{60} и размер зерен определялись с помощью атомносилового микроскопа "Nanoscope IIIA". На рис 1 приведены в качестве примера виды структуры поверхности пленок Ti- C_{60} .

Рис. 1 – *АСМ-изображение* поверхности *Ti-C*₆₀ пленок: *a*) *п*_{Ti}/*n*_{C60}= 30; *б*) *п*_{Ti}/*n*_{C60}= 12.

Размеры зёрен и статистика их распределения показана на рис.2.

*Рис. 2. - Распределение по размеру зёрен в Тi-С*₆₀ *пленках: 1− птi/п*_{C60}= 680; 2− *п*_{Ti}/*п*_{C60}= 60; . 3− *п*_{Ti}/*п*_{C60}= 6.

Исследования показали, что размер зерен зависит от долевого состава компонентов. Гомогенные пленки как титана, так и фуллерита имеют зерна больших размеров, чем пленки сплавов титана и фуллерита. С ростом гетерогенности размер зерен в пленках уменьшается. Это объясняется процессами зарождения и последующего роста островков, которые вырастают до зерен сплошной пленки. Молекулы C_{60} вследствие меньшей подвижности выступают центры как кристаллизации для атомов металла. Когда молекул С₆₀ на подложке мало, то образуется меньше зародышей, а, значит, зерна имеют возможность расти до больших размеров. С увеличением доли молекул С₆₀ размер зерен уменьшается. Когда на подложку поступает мало атомов металла, зарождение и рост зерен малой происходит медленнее (вследствие подвижности С₆₀), что приводит к увеличению размеров зерен.

Рентгенографические исследования проводили с целью выявления возможных химических соединений в системе $Ti-C_{60}$, поскольку для системы $Cu-C_{60}$ ранее [4] была обнаружена фаза Cu_6C_{60} .

Рис. 3. Рентгенограммы плёнок Ті-С₆₀: 1– n_{Ti}/n_{C60}=6, 2– n_{Ti}/n_{C60}=12.

Фрагменты рентгенограмм пленок сформированных при конденсации титана и титана с фуллереном С₆₀ представлены на рис. 4. В таблице приведены межплоскостные расстояния d/n и интенсивности I/I1 пленок Ті-С₆₀ с соотношением n_{тi}/n_{C60}=6. Для сравнения в таблице представлены также данные по рентгеновским характеристикам для оксидов титана, титана и фуллерена С₆₀ [5].

Рис. 4 - Рентгенограммы плёнок Ті (1) и Ті- C_{60} ($n_{Ti}/n_{C_{60}}=12$) (2) а) - диапазон углов $2\theta=8-27$ град;.б). - диапазон углов $2\theta=34-42$ град.

Таблица 1. Межплоскостные расстояния и интенсивности линий тонких пленок (Ti, Ti+C₆₀).

Экспериментальные данные				Литературные данные							
Ti		Ti+C ₆₀		TiO		Ti ₃ O ₅		Ti		C ₆₀	
d/n, Å	I/I ₁	d/n, Å	I/I ₁	d∕n, Å	I/I ₁	d∕n, Å	I/I ₁	d/n, Å	I/I ₁	d/n, Å	I/I ₁
-	-	7,4	37	-	-	-	-	-	-	-	-
7,196	89	-	-	7,18	60	-	-	-	-	-	-
-	-	7,14	100	-	-	-	-	-	-	7,12	4
-	-	6,86	24	-	-	-	-	-	-	6,85	3
-	-	6,46	33	-	-	-	-	-	-	-	-
-	-	5,01	21	-	-	-	-	-	-	-	-
4,23	16	-	-	-	-	4,28	30	-	-	-	-
4,17	24	-	-	4,13	30	4,13	18	-	-	-	-
4,02	14	-	-	-	-	4,00	18	-	-	-	-
3,87	12	-	-	-	-	3,83	30	-	-	-	-
3,75	14	3,65	19	3,75	20	3,77	40	-	-	-	-
3,59	100	3,58	75	-	-	3,54	100	-	-	3,54	4
3,49	16	3,47	21	-	-	3,44	20	-	-	-	-
2,39	44	-	-	2,39	50	2,38	40	2,56	30	-	-
2,35	35	-	-	-	-	-	-	2,34	20	-	-

Как следует из приведенных данных, в фазовый состав пленок входят его оксиды TiO, Ti₃O₅. В небольшом количестве в нем присутствует титан, о чем непосредственно свидетельствует наличие характерного для него отражения с d/n= 2,35. Наряду с этим наблюдается изменение значений межплоскостных расстояний, относящихся к оксидам титана. Рентгенограммы характеризуются появлением новых дифракционных отражений с d/n, равными 7,4; 7,14; 6,86; 5,01 Å. Сравнение данных по межплоскостным расстояниям для С₆₀ И приведенных значений d/n для пленок Ti+C₆₀ следует, что некоторые из них (d/n=7,14, 6,86, 3,58) можно отнести к фуллериту С₆₀.

Одновременно с этим следует отметить, что полученные значения межплоскостных

расстояний несколько отличаются от величин d/n, относящихся к TiO, Ti₃O₅, что может быть связано с формированием соединений титана с фуллереном.

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА НА ПЕРЕМЕННОМ ТОКЕ ТИТАН-ФУЛЛЕРЕНОВЫХ ПЛЕНОК

Исследовалось полное электрическое сопротивление пленок с разными долевыми соотношениями Ti/C_{60} (n_{Ti}/n_{C60} =6-1000). Графики изменения полного электрического сопротивления для ряда образцов с разными долевыми соотношениями Ti/C_{60} приведены на рис.5.

Рис.5. Зависимость полного электрического сопротивления плёнок от частоты при различных концентрациях Ti/C_{60} : а - 1.- n_{Ti}/n_{C60} =680, 2.- n_{Ti}/n_{C60} =270, 3.- n_{Ti}/n_{C60} =140, б - n_{Ti}/n_{C60} =110.

Увеличение концентрации молекул C_{60} в плёнке титана приводит к увеличению удельного электрического сопротивления плёнки на постоянном токе [6]. На переменном токе в плёнках Ti-C₆₀ идет монотонное уменьшение полного электросопротивления и изменение угла сдвига фазы с увеличением частоты. Так сопротивление плёнки Ti-C₆₀ с долевым отношением n/n=680 (рис. 5а-1) изменяется с 900 до 600 Ом (1,5 раза), а с n/n=270 (рис. 5а-2) с 800 до 400 Ом (2 раза).

Исходя из приведенных на рис. 5 зависимостей следует, что полное электрическое сопротивление плёнок содержит емкостную и, возможно, индуктивную составляющие. Эквивалентная схема структуры Ti-C₆₀ для этого случая имеет вид, показанный на рис. 6.

Рис. 6. Эквивалентное электрическое звено, отражающее структуру пленки Ti-C₆₀.

По экспериментальным значениям полного электрического сопротивления плёнок, исходя из эквивалентной схемы были рассчитаны значения параметров звена эквивалентной схемы R₁, R₂, C, L для разных долевых соотношений, которые представлены в таблице 2.

Таблица 2. Измеренные значения плёнок Ті-С₆₀ и расчетные значения параметров звена эквивалентной схемы от долевого отношения n/n.

n _{Ti} /n _{C60}	R ₁ , кОм	R ₂ , кОм	C·10 ⁹ , ф	L·10 ⁴ , Гн
12	891	76	0,6	-
25	648	180	2,4	0,28
30	125	12	4,8	1,1
45	194	37	6,0	1,4
110	46	67	8,0	1,9
140	15,6	2,35	6,0	0,9
270	5,8	0,88	3,4	-
680	4,2	0,64	2,0	_
1000	3.2	0,56	-	_

Как следует из приведенных данных полное электрическое сопротивление пленок Ti-C₆₀ имеет емкостную И индукционную составляющие. При этом в образцах с малой (до n_{Ti}/n_{C60}=12) и высокой (выше n_{Ti}/n_{C60}=900) долей металла реактивная составляющая электросопротивления не выявляется на всех использованных частотах. Полученные результаты указывают на смену механизмов проводимости в пленках с разным долевым соотношением металлической И диэлектрической фаз. Образцы с малой долей металла представляют собой полупроводник (диэлектрик, легированный атомами металла). При больших значениях долей металла работают каналы металлической проводимости с островками вкрапленного диэлектрика. При средних значениях долей металла (n_{Ti}/n_{C60}=25140) срабатывает эквивалентная схема R-C-Lцепочки.

выводы

- Плёнки Ті-С₆₀, полученные вакуумным осаждением, представляют мелкодисперсные структуры. Размер зерна может измеяться от 30 до 120 нм в зависимости от соотношения металлической и фуллереновой компонентов.
- Рентгенограммы пленок Тi-C₆₀, сформированных совместной конденсацией титана и C₆₀, характеризуются появлением новых дифракционных отражений с d/n, равными 7,4, 7,14, 6,86, 5,01 A, что может быть связано с формированием соединений атомов титана с фуллереном.
- Установлено, что полное электрическое сопротивление пленок Ti-C₆₀ уменьшается с ростом частоты, что связано с емкостными и индукционными свойствами композиционной пленочной структуры Ti-C₆₀, содержащей металлические и диэлектрические прослойки.
- Показано, что композиционные пленочные структуры Ti-C₆₀ в определенных интервалах долевого состава компонентов обладают свойствами R-C-L- цепочек.

Работа выполнена в рамках международного сотрудничества между Институтом тепло- и массообмена имени А.В.Лыкова НАН Беларуси и Национальным университетом Монголии (код проекта Т19МН-003).

ЛИТЕРАТУРА

- Shpilevsky E. M., Zhdanok S. A., Schur D. V. Containing carbon nanoparticles materials in hydrogen energy. Hydrogen Carbon Nanomaterials in Clean Energy Hydrogen Systems – II. Dordrecht: Springer Science, 2011. P. 23–39.
- [2] Shpilevsky E.M., Penyazkov O.G., Filatov S.A., Shilagardi G., Tuvshintur P., Timur-Bator D., Ulam-Orgikh D. Modification of materials by carbon nanoparticles//Solid State Phenomena Shweizarland, 2018.Vol. 271. P.70-75.
- [3] Витязь П. А., Свидунович Н. А., Куис Д. В. Наноматериаловедение: учеб. Пособие. Минск: Высш. шк., 2015. – 511 с.
- [4] Шпилевский Э. М., Шпилевский М. Э., Соловей Д. В. Получение и изучение пленок фуллерида меди//Вакуумная техника, материалы и технология. М.: ФГУП «НИИ вакуумной техники имени С. А. Векшинского». 2013. С. 151–155.
- [5] Миркин Л.И., Уманский Я.С., Справочник по рентгеноструктурному анализу поликристаллов, 1961, а так же Картотека ASTM (American Society for Testing Materials).
- [6] Шпилевский Э.М., Шпилевский М.Э., Шилагарди Г. Электрические и термоэектрические свойства тонких пленок титан-фуллерен.//Вакуумная техника, материалы и технология. М.: ФГУП «НИИ вакуумной техники им. С.А. Векшинского». 2012. С. 111-115.