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We propose the square root operator formalism for description of motion for a dark particle
candidate. It turns out that such type particle moves randomly and �lls in whole space. It seems
that such particles do not create material structure of universe, like atoms, molecules, stars, planets
and etc. due to their stochastic motion.

I. INTRODUCTION

Recently, concept of dark particles and dark
energy plays a vital role in the cosmological theory.
In last decates many experimental and theoretical
studies are carried out in this direction and have
obtained many interesting results. However, nature
of dark particles and dark energy is unclear and does
not understood very well.
Dark matter is a hypothetical type of matter

distinct from baryonic matter (ordinary matter
such as protons and neutrons), electrons, neutrinos
and dark energy. Dark matter has never been
directly observed; however, its existence would
explain a number of otherwise puzzling astronomical
observations [1], and its properties are inferred
from its gravitational e�ects such as the motions
of baryonic matter [2], gravitational lensing, its
in�uence on the universe's large-scale structure, on
the formation of galaxies, and its e�ect on the cosmic
microwave background (CMB).
The standard model of cosmology indicates that

the total mass- energy of the universe contains 4.9%
ordinary matter, 26,8% dark matter and 68,3% dark
energy [3]. Thus, dark matter constitutes 84,5%
of total mass, while dark energy plus dark matter
constitute 95,1% of total mass-energy content [4].
The dark matter hypothesis plays a central role

in current modeling of cosmic structure formation,
galaxy formation and evolution, and on explanations
of the anisotropies observed in the cosmic microwave
background (CMB).
The most widely accepted hypothesis on the form

for dark matter is that its composed of weakly

interacting massive particles that interact only
through gravity and the weak force.
In this article, we propose the square-root

operator formalism for the description of a dark
matter particle which possesses random properties
with random momentum or random mass with the
de�nite probabilistic measure:

ω(ρ) =
1

π

1√
1− ρ2

(1)

with properties:

1∫
−1

dρω(ρ) = 1, (2)

1∫
−1

dρρω(ρ) = 0, (3)

1∫
−1

dρρ2ω(ρ) =
1

2
. (4)

II. THE GREEN FUNCTIONS OF THE
USUAL PARTICLES

We know that ordinary particles such as scalar,
spinor, vector �elds obey the usual di�erential
equations [5,6]

A. Scalar particle

The homogeneous Klein-Gordon equation

(m2 −�)D(x) = 0 (5)

has the solution

D(x) =
1

2π
ϵ(x0)δ(λ)− m

4π
√
λ
ϵ(x0)θ(λ)J1(m

√
λ),

(6)

where λ = x20 −−→x 2, � = △− 1

c2
∂2

∂t2
.

Moreover, the fundamental solution (the causal
Green function) of the Klein-Gordon-Fock operator

(m2 −�)Gc(x) = δ4(x) (7)

is given by

Gc(x) =
1

(2π)4

∫
d4k

e−ikx

m2 − k2 − iϵ
. (8)

An explicit form of this function is

Gc(x) =
1

4π
δ(λ)− m

8π
√
λ
θ(λ)[J1(m

√
λ)− iN1(m

√
λ)]

+
mi

4π2
√
−λ

θ(−λ)K1(m
√
−λ). (9)

Here J1(x), N1(x) and K1(x) are the Bessel, the
Bessel function of the second kind or the Neumann
one (also denoted by Y1(x)) and the modi�ed Bessel
function of the second kind (sometimes K1(x) is
called the Mac' Donald function), respectively.

5



6 Namsrai Kh, Munkhzaya B., Square-Root Di�erential Equations for Dark Matter Particles

B. An even solution of the inhomogeneous
D'Alembert equation

�G0(x) = −δ4(x) (10)

is

G0(x) = Gc(x)|m=0 =
1

4π
(δ(λ)− i

πλ
)

=
1

4π
δ+(−λ) ≡

1

4π2

∞∫
0

dxeix(−λ). (11)

In this case, the photon Green function can be
represented in the well-known form

Gph
µν(x) =

gµν
(2π)4i

∫
d4k

e−ikx

k2 + iϵ
(12)

C. The fundamental solution of the Green
function for vector �eld

satis�es the Prock equation(
gµν +

1

m2

∂2

∂xµ∂xν

)
Gc

µν(x) = δ4(x), (13)

where

Gc
µν(x) =

(
gµν +

1

m2

∂2

∂xµ∂xν

)
Gc(x) (14)

or

Gc
µν(x) =

1

(2π)4

∫
d4ke−ikx(gµν − kµkν

m2
)

× 1

m2 − k2 − iϵ
. (15)

Here Gc(x) is the Green function (9) for the Klein-
Gordon equation (7). In this case, homogeneous
equation of (13) has the solution

Dµν(x) = (gµν +
1

m2

∂2

∂xµ∂xν
)D(x), (16)

where D(x) is given by the formula (6).

D. The fundamental solution or the Green
function for the Dirac equation

(
iγµ

∂

∂xµ
+m

)
Sc(x) = δ4(x) (17)

is given by the formulas

Sc(x) =
1

(2π)4

∫
d4pe−ipx m+ p̂

m2 − p2 − iϵ
, (18)

where p̂ = p0γ
0 − −→p −→γ , γµ are the Dirac γ-

matrices.

III. THE FUNDAMENTAL SOLUTION OF
THE GREEN FUNCTION FOR THE WEYL

EQUATION

√
m2 −�W c(x) = δ4(x). (19)

Long time ago H.Weyl [7] proposed the square-root
operator formalism, like (19) in the �eld theory.
However, because of mathematical di�culty how to
work with the di�erential operator under the square-
root, this formalism did not developed and instead
of which Klein-Gordon formalism was accepted.
It turns out that the Weyl equation (19) has

remarkable properties and gives stochastic solutions
over momentum variables pµ ⇒ ρpµ or equivalently
over mass valuem⇒ ρm, where ρ is random variable
with the measure (1). To get these properties, we

consider the Green function W̃ c(p) in the momentum
space [8]

W̃ c(p) =
1√

m2 − p2
(20)

and use the Feynman parametrization formula

1

an1bn2
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

1∫
0

dxxn1−1(1− x)n2−1

× 1

[ax+ b(1− x)]n1+n2
(21)

In our case n1 = n2 = 1/2, Γ(1/2) =
√
π, m2 −

p2 = (m− p̂)(m+ p̂), p̂ = γµp
µ. The result reads

W̃ c(p) =
1

π

1∫
−1

dρ
1√

1− ρ2
m+ p̂ρ

m2 − p2ρ2
. (22)

An another equivalent representation (20)

W̃1
c
(p) =

−1

i
√
p2 −m2

gives stochasicity over mass value m:

W̃1
c
(p) =

1

π

1∫
−1

dρ
1√

1− ρ2
1

i

mρ+ p̂

m2ρ2 − p2
. (23)

These two representations (22) and (23) are
absolutely equivalent and only have di�erent
physical interpretation. The �rst case (22) gives the
well-known spinor propagator or the causal Green
function

W c
sp(x) =

1

π

1∫
−1

dρ√
1− ρ2

× 1

(2π)4

∫
d4pe−ipx m+ p̂ρ

m2 − p2ρ2 − iϵ
(24)
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with stochastic momentum pµ → ρpµ and stochastic
energy value

ω1 =
1

|ρ|
√
m2 +−→p 2ρ2. (25)

Moreover, due to property

1

π

1∫
−1

dρ
ρ√

1− ρ2
= 0,

the case (22) includes also scalar particles with
stochastic momentum and its Green function takes
the form

W c
sc(x) =

m

π

1∫
−1

dρ
1√

1− ρ2
1

(2π)4

×
∫
d4pe−ipx 1

m2 − p2ρ2 − iϵ
. (26)

The case (23) leads to the spinor propagator with
the random mass m→ mρ:

W c
1sp(x) =

1

π

1∫
−1

dρ√
1− ρ2

1

(2π)4i

×
∫
d4pe−ipx mρ+ p̂

m2ρ2 − p2 − iϵ
(27)

with stochastic energy

ω2 =
√
m2ρ2 +−→p 2. (28)

Averaged energy (25) for the �rst case gives singular
value:

< ω1 >=
2

π

1∫
0

dρ

ρ

√
m2 +−→p 2ρ2√

1− ρ2
. (29)

In contrary, the second case (23) gives a �nite value
for an averaged energy

< ω2 > =
2

π

1∫
0

dρ
1√

1− ρ2

√
m2ρ2 +−→p 2

=
2
√
m2 +−→p 2

π
E

(
π

2
,

m√
m2 +−→p 2

)
(30)

and

< ω2
2 >=

1

2
m2 +−→p 2. (31)

Here E

(
π
2 ,

m√
m2+−→p 2

)
is the elliptic integral of the

second kind

E(φ, k) =

∫ φ

0

√
1− k2 sin2 αdα.

Notice that the �rst case leads to interesting
consequences that in the square-root formalism
averaged rest mass goes to in�nite

< ω1 > |−→p =0 = ∞.

It means that the �rst case gives super heavy dark
particle. It is natural that in this formalism the
Einstein formula E = mc2 for usual matter particles
does changed and acquires the form

< E0 >=
2m

π
c2 (32)

due to formula (30).
In this paper, we propose that square-root or

Weyl particles maybe played a role as dark matter
particles in the whole Universe. Due to random
di�usion, like the Brown motion detection of
dark matter particles by experiments encountries
di�cults, therefore they �ll in whole empty space
and do not make up usual matter structure.

IV. EXPLICIT FORMS OF GREEN
FUNCTIONS FOR SQUARE-ROOT
PARTICLES (DARK PARTICLES) IN

X-SPACE

A. Scalar particle case with random
momentum pµρ

In accountancy with the formulas (9) and (26), one
gets

W c
sc(x) =

m

π

1∫
−1

dρ
1√

1− ρ2
1

ρ2
×
{

1

4π
δ(λ)

− m

8π
√
λρ
θ(λ)

[
J1

(
m

ρ

√
λ

)
− iN1

(
m

ρ

√
λ

)]
+

mi

4π2
√
−λ

1

ρ
θ(−λ)K1

(
m

ρ

√
−λ
)}

. (33)

B. Spinor particle with stochastic momentum
pµρ

By using the formulas (24) and (9) one gets

W c
sp(x) =

1

π

1∫
−1

dρ√
1− ρ2

1

ρ

(
iγν

∂

∂xν
+
m

ρ

)
{

1

4π
δ(λ)− m

8πρ
√
λ
θ(λ)×

×
[
J1

(
m

ρ

√
λ

)
− iN1

(
m

ρ

√
λ

)]}
.

+
im

4π2ρ
√
−λ

θ(−λ)K1

(
m

ρ

√
−λ
)

(34)
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C. Spinor particle with stochastic particle's
mass mρ

Taking into account the formulas (9) and (27) it
easy to �nd the following causal Green-Function for
a dark particle

W c
sp(x) =

1

π

1∫
−1

dρ
1√

1− ρ2

(
iγν

∂

∂xν
+mρ

)
{

1

4π
δ(λ)− mρ

8π
√
−λ

θ(λ)×[
J1

(
mρ

√
λ
)
− iN1

(
mρ

√
λ
)]

+
imρ

4π2
√
−λ

θ(−λ)K1

(
mρ

√
−λ
)}

. (35)

From the formulas (33)-(35) one can conclude that
the Green function or propagator of a dark scalar
particle (33) and causal Green function for a dark
spinor particle (34) are singular functions with
respect to integration over random variable ρ and
therefore they can not play a role as causal Green
functions.
In contrary, the causal Green function (35) is

�nite. It means that stochasticity in mass variable for
a square-root or dark particle has de�nite physical
meaning.
In conclusion, notice that from the formulas (23)

and (27) one can conclude that a dark neutrino like
particle coincides with the usual neutrino in the limit
m → 0, due to the formula (2). It mean that if
an usual neutrino possesses even extremely small
mass then neutrinos play a vital role in dark matter
content of the Universe.

V. A SOLUTION OF THE SQUARE-ROOT
KLEIN-GORDON EQUATION

Let us consider the equation√
(m2 −�)Φ(x) = 0. (36)

Here we use the following formal transformation√
(m2 −�) ·

√
(m2 −�)√

(m2 −�)
Φ(x) (37)

=
1

π

1∫
−1

dρ√
1− ρ2

mρ+ ∂̂

m2ρ2 −� (m2 −�)Φ(x) = 0.

In the momentum representation a solution of
equation (37) takes the form

Φ(x) =
1

π

1∫
−1

dρ√
1− ρ2

1

(2π)4

∫
d4peipxφ̃(p)

× δ(m2 − p2)
mρ+ p̂

m2ρ2 − p2
, (38)

where

Φ(x) =
1

(2π)4

∫
d4peipxφ̃(p),

δ(m2 − p2) =
1

2ωp
[δ(p0 + ωp) + δ(p0 − ωp)] ,

ωp =
√
m2 +−→p 2.

An another equivalent representation for (37) takes
the form

1

π

1∫
−1

dρ√
1− ρ2

m+ ρ∂̂

m2 − ρ2� (m2 −�)Φ(x) = 0 (39)

or

Φ(x) =
1

π

1∫
−1

dρ√
1− ρ2

× 1

(2π)4

∫
d4peipxδ(m2

− p2)
m+ ρp̂

m2 − ρ2p2
φ̃(p). (40)

Here

1

m2 − ρ2p2
=

1

m2(1 + ρ)2 + 2ρ2−→p 2
, for p0 = −ωp,

or

1

m2 − ρ2p2
=

1

m2(1− ρ)
, for p0 = ωp

p̂ = γνpν , ∂̂ = iγν
∂

∂xν
.

VI. THE PAULI-JORDAN SOLUTION OF
THE SQUARE-ROOT KLEIN-GORDON

EQUATION

In this case, equation (36) takes the form√
m2 −�P (x) = 0 (41)

where

P1(x) =
1

π

1∫
−1

dρ√
1− ρ2

∞∫
0

dαe−α(m2ρ2−�)

×
(
mρ+ iγν

∂

∂xν

)
DGF (x). (42)

or

P2(x) =
1

π

1∫
−1

dρ√
1− ρ2

∞∫
0

dαe−α(m2−ρ2�) ·

·
(
m+ iργν

∂

∂xγ

)
DGF (x).

Here DGF (x) is given by the formula (6).
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VII. DARK PHOTONS

An Even Solution of the Square-Root
Inhomogeneous D'Alembert equation

√
�W0(x) = δ4(x) (43)

is given by the following two equivalent expressions
in the momentum space:

W̃ 1
0 (p) =

1

π

1∫
−1

dρ
1√

1− ρ2
p0 +

−̂→p ρ
p20 −

−→p 2ρ2
(44)

or

W̃ 2
0(p) =

1

π

1∫
−1

dρ
1√

1− ρ2
ρp0 +

−̂→p
p20ρ

2 −−→p 2
, (45)

where −̂→p = σipi, σi are the Pauli matrices.
These two formulas (44) and (45) in x-space take

the forms

W 1
0 (x) =

1

π

1∫
−1

dρ
1√

1− ρ2

(
iρ−1 ∂

∂t
+ i−→σ ∂

∂−→x

)
·

· 1
4π

[
δ(λ′)− i

πλ′

]
, (46)

λ′ = x20ρ
2 −−→x 2,

and

W 2
0 (x) =

1

π

1∫
−1

dρ
1

ρ
√
1− ρ2

(
iρ
∂

∂t
+ i−→σ ∂

∂−→x

)
·

· 1
4π

[
δ(λ′′)− i

πλ′′

]
, (47)

λ′′ = x20/ρ
2 −−→x 2.

Here

G0(x) =
1

4π

[
δ(λ)− i

πλ

]
(48)

corresponds to the Green function (the causal
function ) for a massless particle, like the photon,
which can be represented in the well-known form

Gph
0 (x) =

gµν
(2π)4

1

i

∫
d4p

e−ipx

p2 + iϵ
(49)

Averaged energy for a dark photon for the second
case takes the form

< Eγ
20 >=

1

π

1∫
−1

dρ
1√

1− ρ2
1

|ρ|
|−→p | = 2

π

1∫
0

dρ

ρ
√

1− ρ2
|−→p |.

(50)

This integral is diverged and therefore the second
case does not accepted. Moreover, the �rst case leads
to the �nite energy form

< Eγ
10 > =

1

π

1∫
−1

dρ
1√

1− ρ2
|ρ||−→p | =

=
2

π

1∫
0

dρρ
1√

1− ρ2
|−→p | = 2

π
|−→p | (51)

for the dark photon.
Thus, family of dark matter particles consist of

dark scalar, dark spinors, dark photons and dark
neutrinos which coincide with usual neutrinos. All
these particles possess stochastic properties with
respect to the probabilistic measure (1).

Appendix A

It turns out that the probabilistic measure
(1) plays a role as a �lter or an intermediate
mathematical trick in the square-root di�erential
calculus. Due to this �lter solutions of square-root
di�erential equations describe wave properties of
dark matter particles. To show this we consider
very simple system-harmonic motion de�ning by the
di�erential equation(

a2 +
d2

dt2

)
x(t) = 0, (52)

solution of which is

x(t) = A sin at. (53)

Now let us turn to the square-root equation√
a2 +

d2

dt2
X(t) = 0, (54)

where the probabilistic measure (1) appears:

1√
a2 + d2

dt2

f(t) =
1

π

1∫
−1

dρ√
1− ρ2

∞∫
0

dαe−α(a2+ρ2 d2

dt2
) ·

·
(
a+ iρ

d

dt

)
f(t). (55)

Here

e−αρ2 d2

dt2 = 1− αρ2
d2

dt2
+
α2ρ4

2!

d4

dt4
− . . .

=

∞∑
n=0

(−1)n

n!
αnρ2n

d2n

dt2n
,

and we use the following calculations
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1

1

π

1∫
−1

dρ√
1− ρ2

ρ2n =
1√
π

Γ(n+ 1
2 )

Γ(n+ 1)
.

2.

∞∫
0

dααne−αa2

= (a2)−1−nΓ(n+ 1).

3.

1

π

1∫
−1

dρ√
1− ρ2

ρ2n+1 = 0.

Then, we have nice formula

D̂f(x) =
1√

a2 + d2

dt2

f(t) =
1

a
√
π

∞∑
n=0

(−1)n

· Γ(n+ 1/2)

n!

1

a2n

(
d2

dt2

)n

f(t). (56)

In particular:

D̂C =
1

a
C, D̂t = 1

a
t,

D̂t2 =
1

a
t2 − 1

a3
,

D̂ sin bt = Λ(a, b) sin bt,

D̂ cos bt = Λ(a, b) cos bt,

D̂eibt = Λ(a, b)eibt,

D̂e−ibt = Λ(a, b)e−ibt,

D̂ebt = Λ′(a, b)ebt,

D̂e−bt = Λ′(a, b)e−bt,

and so on. Here

Λ(a, b) =
1

a
√
π

∞∑
n=0

Γ(n+ 1/2)

n!

(
b2

a2

)n

=
1

a

(
1− b2

a2

)−1/2

, (57)

Λ′(a, b) =
1

a
√
π

∞∑
n=0

(−1)nΓ(n+ 1/2)

n!

(
b2

a2

)n

=
1

a

(
1 +

b2

a2

)−1/2

. (58)

So that

D̂ sin bt =
sin bt√
a2 − b2

,

D̂ cos bt =
cos bt√
a2 − b2

.

Finally, equation (54) takes the form

N̂X(t) =

√
a2 +

d2

dt2
X(t) =

(
a2 + d2

dt2

)
√
a2 + d2

dt2

X(t) (59)

=

(
a2 +

d2

dt2

)
D̂X(t) = D̂

(
a2 +

d2

dt2

)
X(t).

In particular,√
a2 +

d2

dt2
sin bt =

a2 − b2√
a2 − b2

sin bt,√
a2 +

d2

dt2
cos bt =

a2 − b2√
a2 − b2

cos bt.

Therefore, the square-root di�erential equation√
a2 +

d2

dt2
X(t) = 0 (60)

describes also harmonic oscillator X(t) = A sin at
due to �lter properties of the probabilistic measure
(1). Generalization of the equation (60)√

m2 −�Gc(x) = δ4(x) (61)

or

(m2 −�)√
m2 −�

Gc(x) = δ4(x), (62)

(
� = − 1

c2
∂2

∂t2
+

∂2

∂−→x 2

)
leads to the description of the generalized causal
Green function for square-root Klein-Gordon
equation, where

Gc(x) =
1√

m2 −�
δ4(x) (63)

=
1

m
√
π

∞∑
n=0

(−1)n

n!

Γ(n+ 1/2)

m2n
(�)nδ4(x)

is the particular case of E�mov's nonlocal or
generalized function [9] describing a nonlocal or
extended object. This object is distributed in a
domain determined by the length

L =
~
mc

.



ÌÓÈÑ-èéí ýðäýì øèíæèëãýýíèé áè÷èã ÔÈÇÈÊ ñýòã³³ë 27 (495), 2018 11

It is obviously that the plane wave ψ(x) = 1
(2π)3/2

eipx

(px = p0x
0 − −→p −→x ) satis�es the square-root

di�erential equation√
m2 −�eipx =

m2 − p2√
m2 − p2

eipx = 0, (64)

if m2 = p20 − −→p 2, where we have used the formula
(63) with the change δ4(x) ⇒ eipx.

Appendix B

It turns out that in our scheme, a new force
appears, we call it a �fth force or a dark force due
to exchange of square-root or dark matter particles

with the propogator 1/
√
m2 +−→p 2 in the momentum

space in the static limit. We know that the Coulomb
and Yukawa potentials UC , Uγ are related with the
photon and scalar particles propogators in the static
limit by the following formulas:

UC(r) =
e

(2π)3

∫
d3pei

−→p −→r 1
−→p 2

=
e

4πr
, (65)

Uγ(r) =
g

(2π)3

∫
d3pei

−→p −→r 1

m2 +−→p 2
=

g

4π

e−mr

r
.(66)

Then by analogous with these formulas, we obtain
a new potential

UD(r) =
λ

(2π)3

∫
d3pei

−→p −→r 1√
m2 +−→p 2

=
λ

2π2

m

r
K1(mr),

(67)
where K1(z) is the Mac Donald function, e, g and

λ are some constants. Asymptotic behaviour of this
potential takes the form

UD(r) =

{
λ

4π2m
2 ln Cz

2 z = mr → 0
λ

4π2
m2

z

√
π
2z e

−z, z = mr → ∞
(68)

C = 0.57721566490 . . .. It means that a dark
particle potential is short distance like the Yukawa
one.
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