Спектральное Проявление Плазмонного Резонанса в Металл-Фуллереновых Наноструктурах

Э. М. Шпилевский¹, А. Д. Замковец¹, М. Э. Шпилевский¹, С. А. Филатов¹, Г.

Шилагарди², *, П. Тувшинтур², Ц. Хандмаа², Р. Нямдулам²

¹Институт тепло- и массообмена им. А.В.Лыкова НАН Беларуси, г. Минск, Беларусь, 220072,

Минск, П.Бровки, 15,

²Национальный университет Монголии, Улан-Батор, Монголия

Показано, что положение максимума, форма и ширина полосы резонансного плазмонного поглощения в оптических спектрах металл-фуллереновых наноструктур зависят от объемной доли металлической и фуллереновой компонентов, размера островков, степени заполнения поверхности подложки.

Spectral manifestations plasmon resonance in metal-fullerene nanostructures.

It is shown that the maximum position, shape and width of the plasmon resonance absorption spectra of optical nanostructures metal-fullerene depend on the volume fraction of the metal and the fullerene phases island size, degree of surface coverage of the substrate.

I. ВВЕДЕНИЕ.

Металлосодержащие наноструктуры оптическими обладают уникальными и оптоэлектронными свойствами. Эти свойства во многом обусловлены тем, что в УФ и видимом диапазонах для металлических наночастиц проявляются полосы резонансного плазменного поглощения (или так называемые поверхностные моды), возникающие вследствие коллективных колебаний свободных электронов в наночастицах [1]. Спектральная область проявления поверхностных мод для наночастиц металлов определяется условием Фрелиха для диэлектрических проницаемостей матрицы И используемого металла. Характеристики поверхностных мод (или полос плазменного поглощения) зависят от многих факторов: материала наночастиц И окружающей матрицы, размеров частиц и их формы, плотности упаковки и т.д. [2-4].

Метод испарения и конденсации материалов в вакууме является одним из эффективных экспериментальных методов формирования сверхтонких металлодиэлектрических структур, проявляется поверхностный которых в плазмонный резонанс поглощения (ППРП). Наряду возможностью практического с использования наноструктур таких для детектирования молекул в биологии и медицине, широкие перспективы открываются тонкопленочных создания на основе ДЛЯ структур устройств нового поколения для хранения обработки информации, И обладающих нанометровым диапазоном размеров элементов И высоким быстродействием. Для решения этих задач могут оказаться эффективными металлфуллеритовые структуры, которых y *Electronic address: gshilagardi@yahoo.com

уникальными свойствами обладают как фуллереновая, так и металлическая нанофазы.

В настоящей работе исследованы структура и спектры пропускания наноструктур Au - C60, Ag - C60 и Cu - C60 с различной поверхностной плотностью компонентов. Выбранные три металла располагаются в одной группе таблицы химических элементов и имеют одинаковое число электронов на внешней оболочке, однако размеры их атомных остовов различаются, поэтому характеризуются разной степенью экранирования заряда ядра.

II. МЕТОДИКА ЭКСПЕРИМЕНТА.

Исследованы наноструктуры толщиной 2различной долей 20 нм массовой с металлической и фуллереновой компонентов (от 0 до 100 %), которые получали термическим испарением и конденсацией в вакууме на подложках из стекла и кварца в вакууме при остаточном давлении воздуха 2.10-3 Па из двух испарителей (отдельно лля металла И фуллерита). В процессе формирования металлфуллереновых структур подложки не подогревались. Температура подложек составляла 20-21°C. Варьирование соотношением плотностей потока атомов молекул фуллерена В металла И зоне формирования наноструктур обеспечивалось изменением места расположения подложки испарителей. Структурные относительно осуществлялись помощью исследования с атомно-силового микроскопа «Nanoscan». Спектральные характеристики записывались на спектрофотометре «Cary 500».

III. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

Изготовленные структуры представляли собой тонкую пленку фуллерита с хаотически расположенными вкраплениями металлических наночастиц. Типичные виды поверхностей исследованных наноструктур, полученные с помощью атомно-силового микроскопа представлены на рис.1.

Рис.1. АСМ изображение островковых металл-фуллереновых структур: а) Аu - C_{60} , (3,92·10⁻⁶ г/см² Au, 1,52·10⁻⁶ г/см² C₆₀); б) Cu - C_{60} , (4,40·10⁻⁶ г/см² Cu, 3,12·10⁻⁶ г/см² C₆₀); в) Ag - C_{60} , (3,62·10⁻⁶ г/см² Ag, 3,52·10⁻⁶ г/см² C₆₀)

Спектральное положение максимума полосы резонансного плазмонного поглощения (для металлических наночастиц определяется условием Фрелиха: є0 = -2єт, где є0 и єт диэлектрические проницаемости металлической частицы и окружающей среды, соответственно) [1].

Спектры пропускания островковых структур С60 демонстрируют наличие у них трех полос поглощения с центрами на длинах волн $\lambda 1 \sim 340$ нм, $\lambda 2 \sim 450$ нм и $\lambda 3 \sim 600$ нм. По-видимому, эти полосы обусловлены межзонным поглощением у фуллерита (ширина запрещенной зоны у С60 порядка 1,5-1,95 эв). На рис. 2 представлены спектры пропускания однокомпонентных островковых структур фуллерита С60 и меди.

Совместная конденсация металла и фуллеренов меняет как структуру самих металлических частиц, так и условия на границе раздела металл-фуллерит. Наличие фуллеренов в наноструктурах приводит к коротковолновому сдвигу и изменению формы полосы резонансного плазмонного поглощения. Некоторое ослабление плазмонного поглощения в металл-фуллеритовых наноструктурах связано с отличием от нуля для С₆₀ мнимой части диэлектрической проницаемости.

Рис.2. Спектры пропускания островковых структур фуллерита C₆₀ (1) и меди (2)

Увеличение поверхностной плотности металла приводит к уширению полосы ППРП и сдвигу длинноволновую область. ee В Например, при изменении поверхностной плотности золота от $3.38 \cdot 10^{-6}$ г/см² до $4.50 \cdot 10^{-6}$ ⁶ г/см² спектральный сдвиг максимума полосы ППРП составляет более 80 нм, а для наноструктур меди изменение поверхностной плотности от 3,57·10⁻⁶ г/см² до 4,46·10⁻⁶ г/см² приводит к сдвигу максимума на 35 нм (рис. 3).

Рис.3. Положение максимума полосы пропускания ППРП наноструктур меди и золота от объемной доли металлической фазы (эффективная толщина наноструктур ~ 23 нм)

На рис. 4 приведены спектры пропускания двукомпонентных островковых структур Au - C₆₀ с различными объёмными долями золота.

Для всех рассмотренных наноструктур полосы плазмонного резонанса расположены в видимой области спектра. Для наноструктур, содержащих разные металлы с близкими значениями поверхностных плотностей,

различия наблюдаются существенные спектрального положения и формы полос плазмонного резонанса, что связано с разной степенью влияния на оптические рассматриваемых характеристики металлов межзонного поглощения различными И значениями для них частоты Фрелиха.

Рис.4. Спектры пропускания островковых структур Au - C_{60} с различными объёмными долями золота: 1 - 20%, 2 - 23%, 3 - 25%, 4 - 32% (эффективная толщина 16 нм)

При совместной конденсации металлов и количественное фуллеренов соотношение атомов металла и молекул фуллерена в зоне формирования наноструктуры определяет ее архитектуру, детали которой находят свое отражение в оптических спектрах. От этого соотношения зависит степень деформации распределение электронных оболочек И напряжений на границах нанофаз. Как было показано в работе [5] значительные внутренние механические напряжения могут создаваться в C_{60} молекулах в результате их захвата металлическими наночастицами.

Рис.5. Зависимость пропускания на длине волны максимума полосы РПП наноструктур Си - С₆₀ от объемного содержания Си (толщина наноструктур ~ 23 нм)

Полосы ППРП наноструктур Ме - С₆₀ отличаются по форме от полос ППРП для структур из чистых металлов. Для

наноструктур Ме - C_{60} , в которых массовая доля C_{60} превышает 10%, резонансное плазмонное поглощение ослабляется. Ослабление полос ППРП в наноструктурах Ме - C_{60} частично может быть связано с отличием для C_{60} от нуля мнимой части диэлектрической проницаемости. В координатах «спектральное положение максимума полосы плазмонного поглощения наноструктур - эффективная толщина пленки» (рис.6) получаем почти линейные зависимости, что указывает на взаимосвязь выбранных величин.

Рис.6. Спектральное положение максимума полосы плазмонного поглощения наноструктур Au-C₆₀, Cu-C₆₀ и Ag-C₆₀ в зависимости от эффективной толщины пленки

В координатах «спектральное положение максимума полосы плазмонного поглощения - массовая поверхностная плотность металла» наблюдаем достаточно выраженные гладкие зависимости (рис.7).

Рис. 7. Спектральное положение максимума полосы плазмонного поглощения наноструктур: Au– C_{60} (1), Ag– C_{60} (2), Cu– C_{60} (3) в зависимости от значений суммарной массовой поверхностной плотности металла (соотношение компонентов Me/ $C_{60}=2/3$

Таким образом. оптические спектры наноструктур металлов, а так же металлфуллеренов с разной эффективной толщиной, сформированных на стеклянных и кварцевых различаются подложках, положением максимума, формой шириной И полосы резонансного плазмонного поглощения.

При одинаковом содержании металла наличие фуллеренов в структурах приводит к коротковолновому сдвигу полосы резонансного плазмонного поглощения. В наноструктурах Ме

- [1] К. Борен, Д. Хафмен, Поглощение и рассеяние света малыми частицами. М. Мир, 660 (1986).
- [2] Э. М. Шилевский, А. Д. Замковц, Плазмонный резонанс в наноструктурах золото-фуллерен.// Оптический журнал. 18 (2008).
- [3] A. N. Ponyavina, E. E. Tselesh, A. D. Zamkovets, Optical properties of densely packed plasmonic nanocomposites // Physics and Chemistry of Solid State. 756 (2013).
- [4] А. Н. Понявина, С. М. Качан, Е. Е. Целеш Эффективная диэлектрическая проницаемость композитных материалов с произвольной объемной концентрацией включений // Журн. прикл. спектр. 765 (2012).
- [5] Э. М. Шпилевский, Металл-фуллереновые плёнки: получение, свойства, применение. //Алмазные плёнки и плёнки родственных материалов. – Харьков. «Констаната», 242 (2003).

- C_{60} с массовой долей C_{60} , составляющей более 10 %, резонансное плазмонное поглощение ослабляется.

Варьируя объемной долей металлической и фуллереновой компонентов, размером островков, степенью заполнения поверхности подложки, можно изменять форму и ширину полосы плазмонного резонансного поглощения, а так же положение максимума этой полосы.