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We consider the problem of a plane wave refraction on an a-cut uniaxially crystal. We show that
ordinary and extraordinary waves in Kerr medium could be the plane wave with amplitude and
wavevector independent of coordinates. The another result is that the problem of polarization of
the isoradial wave in a biaxial crystal is reformulated. The driven equation is slightly different the
equation given in Ref.[2]. We solved problem for eigenvalues and eigenvectors of polarization of the
electric field for the isoradial wave.
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I. INTRODUCTION

Birefringence is used in many optical devices which
also plays an important role in second harmonic
generation and other nonlinear optical components,
as the crystals used for this purpose are almost al-
ways birefringent and nonlinear[1]. If the intensity of
light propagating through the nonlinear medium is
sufficiently high, the refractive index of the medium
depends on the intensity of propagating field. The
effect is called Kerr effect.

In this paper, we focused on plane electromagne-
tic (EM) wave propagation in an anisotropic Kerr
medium. We consider the intensity profile of refrac-
ted wave in uniaxial crystal in II section. In next
section problem of polarization of the isoradial wave
in a biaxial crystal is reformulated as Ref.[2]. We
solved eigenvalues and eigenvectors problem for po-
larization of electric field of the isoradial wave.

II. DOUBLE REFRACTION AT A

BOUNDARY OF AN a-CUT UNIAXIALLY

CRYSTAL SURFACE

An important physical consequence for the
wave propagation in anisotropic media is double
refraction[3]. Poynting vector or energy flux of an
electromagnetic field is

S =
1

2
Re[E×H∗]. (1)

The refracted wave, in general, is a mixture of or-
dinary wave and extraordinary wave, so its electric
and magnetic fields are given, respectively, by

E = (Co o e−iko·r + Ce e e−ike·r)eiωt, (2)
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Figure 1: Double refraction at boundary of an a-cut unia-
xially crystal surface

H =
1

ω µ

{

Coe
−iko·r ko × o + Cee

−ike·r ke × e
}

eiωt.

(3)
Here ko (ke) and o (e) are wavevector and unit vec-
tor of polarization of ordinary (extraordinary) wave,
respectively.

The orientation of the crystal, the incident wave
and refracted wave is shown in Fig. 1. For the case
of an a-cut uniaxially crystal surface[3], the intensity
of the wave is

I = a · S. (4)

Using (2) and (3), we can find three terms of the
intensity:

Io =
C2

o

2ωµ
a · o× (ko × o), (5)

Ie =
C2

e

2ωµ
a · e× (ke × e), (6)
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Ioe =
Co Ce

2ωµ
Re{a · o× (ke × e)ei(ke−ko)·r

+ a · e× (ko × o)e−i(ke−ko)·r}

=
Co Ce

2ωµ
{a · o× (ke × e)

+ a · e× (ko × o)} cos[(ke − ko) · r]. (7)

The last (7) term is the interference between ordi-
nary and extraordinary waves. This equals to zero:
Ioe = a · Soe = 0 or

a · o× (ke × e) + a · e× (ko × o) = 0. (8)

Thus, the intensity of transmitted wave is the sum
of intensities of ordinary and extraordinary waves
which is independent on coordinates and time.

If the refractive index of the principal axis is de-
pendent on an intensity (Kerr medium), i.e both
ordinary and extraordinary indexes independent on
space coordinates and time, there could be the self-
consistent plane wave with amplitude and wavevec-
tor independent on coordinate.

When directions of the phase velocities of ordi-
nary and extraordinary waves are matched (isonor-
mal wave, ko//ke), the interference term in eq.(7) of
energy flux is non zero. For instance,

Soe = −
CoCe

2ωµ
o (ko · e) cos((ke − ko) · r). (9)

If refractive indexes on the principal axis are depen-
ding on an intensity, the refractive indexes depend on
coordinated because the interference term dependent
on coordinates. Thus, there cannot be an isonormal
plane wave with constant amplitude and wave vec-
tor.

III. PLANE WAVE IN BIAXIAL CRYSTAL

Let us consider E, D and H real vectors. A wave
packet can be viewed as a linear superposition of
many monochromatic plane waves, each with a defi-
nite frequency ω and wavevector k. Each plane wave
component satisfies the following Maxwell’s equa-
tions in momentum space. Then Maxwell’s equa-
tions are:

k×H = −ωD, k×E = ωµ0H. (10)

The energy flux in the plane wave, i.e. its Poynting
vector is

S = E×H =
1

ωµ0
E×(k×E) =

1

ωµ0

[

kE2 −E (k ·E)
]

.

(11)
The energy flux in biaxial crystal isn’t in same direc-
tion of the wavevector. On the other hand the energy
density is

w =
1

2
(E ·D + B ·H) =

1

ω
k · S. (12)

The refractive vector of the ray is given by

p =
S

cw
. (13)

As well know connection,

k =
ω

c
n. (14)

Here n is the refractive vector of the phase. Using
these definitions of p and n, we can get as following
form of the eq.(12):

p · n = 1. (15)

p is in same direction of s:

p ·E = 0, p ·H = 0. (16)

If (10) equations are multiplied by the cross product
of p vector, using equations of (14)-(16), we have

H = cp×D, E = −c µ0p×H. (17)

If we use these notations H′ ≡ µ0cH, D′ ≡ εE,
ε ≡ µ0c

2n2, (17) equations become

E = −p×H′, H′ = p×D′. (18)

Now, lets assume that u1, u2, u3 are unit vectors
of the principal axis of dielectric tensor, the tensor
is given by the outer product of these vectors (ε1 <
ε2 < ε3):

ε = ε1u1u1 + ε2u2u2 + ε3u3u3. (19)

Furthermore, we will establish the following two vec-
tors using u1,u3:

c1 = k1u1 + k3u3, c2 = −k1u1 + k3u3. (20)

Here,

k1 =

√

ε2 − ε1
ε3 − ε1

, k3 =

√

ε3 − ε2
ε3 − ε1

.

So, let us express the eq.(19) by c1, c2 vectors:

ε = ε2 I +
ε3 − ε1

2
(c1c2 + c2c1) . (21)

Here I is unit operator.
Polarization isoradial wave: According to the

literature [2], an equation for electric field of isoradial
wave have been written as following form:

{

1− p2ε2 −
ε3 − ε1

2

(

[p×c1][p
×c2]

+ [p×c2][p
×c1]

)}

E = 0. (22)

Here c1, c2 vectors are defined by (20). And p× is
the antisymmeter tensor of the vector p. Using this
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tensor, the cross product of two vectors can be writ-
ten as p×c ≡ p× c.

p×p× = pp− p2, cp× = −p×c = −p×c. (23)

We couldn’t understand completely the eq.(22).
Thus we decided to solve the problem from the begin.
From the eq.(18)

E = −p×H′ = −p×p×D′, D′ = εE (24)

or

E + p×p×εE = 0. (25)

If we use the eq.(21), we have

p×p×εE = ε2p
×p×E +

ε3 − ε1
2

(p×p×c1(c2 ·E) + p×p×c2(c1 ·E)). (26)

We can change two terms within the parentheses:

p×p×c1(c2 ·E) = (E× (p× c2))× (p× c1) = (p× c2) ((p× c1) ·E)− ((p× c1) · (p× c2))E, (27)

p×p×c2(c1 ·E) = (E× (p× c1))× (p× c2) = (p× c1) ((p× c2) ·E)− ((p× c2) · (p× c1))E.

In here, we used p(ci ·E) = E× (p× ci) because of p ·E = 0. Thus, the eq.(25) is now:

{

1− p2ε2 − 2
ε3 − ε1

2
[p×c1] · [p

×c2] +
ε3 − ε1

2
([p×c1][p

×c2] + [p×c2][p
×c1])

}

E = 0. (28)

The eq.(28) is quite different from the eq.(22). First,
the third term is new. Second, fourth term has
opposite sign. But, the problem of eigenvectors and
eigenvalues of this equation procedure is same as fin-
ding eigenvectors and eigenvalues of isonormal waves
for magnetic field. Further, we have

Q = [p×c1][p
×c2] + [p×c2][p

×c1].

Also, eigenvalues of this operator are

λ± = [p×c1] · [p
×c2]±

√

[p×c1]2[p×c2]2. (29)

Eigenvectors are

√

[p×c2]2p
×c1 ±

√

[p×c1]2p
×c2. (30)

For the eigenvalue of the refractive vector of the ray,
the eq.(28) is now

1− p2ε2 − 2
ε3 − ε1

2
[p×c1] · [p

×c2] +
ε3 − ε1

2
λ± = 0.

(31)

If we write the refractive vector of the ray p = s

s

using s unit vector, substitution p into the eq.(31)
give us eigenvalues for s:

s2± = ε2 +
ε3 − ε1

2
([s×c1] · [s

×c2]∓
√

[s×c1]2[s×c2]2).

(32)
Corresponding eigenvectors are

E± = A±e±. (33)
Here A+, A− is arbitrary constant,

e± =
√

[s×c2]2s
×c1 ±

√

[s×c1]2s
×c2. (34)

We have shown that the driven equation for E elect-
ric fields of isoradial waves is slightly different the
equation given in Ref.[2]. We solved the problem for
eigenvalues and eigenvectors of the driven equation.
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