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Abstract

Recently, interest in fractional calculus has been encouraged by its applications in the different fields of
science. The applications of fractional calculus include stochastic processes, anomalous diffusion and
rheology. In this paper we present new formulas for taking fractional derivatives and some considerations
of its applications for the harmonic oscillator.
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I. INTRODUCTION

In the 17th century S.I.Newton and G.W.Leibnitz
were developing integral and differential calculations
which are Mathematical forms that define motions
and patterns of nature. In the 1695 the derivative of
order α = 1

2 was described by Leibnitz in his letter
to L’hospital [6, 7, 8, 9]. Recently fractional deriva-
tives have played an important role in mathemati-
cal methods and their physical and chemical applica-
tions [4, 5, 6]. Various type of fractional derivatives
were studied: Riemann-Liouville, Caputo, Hadamard,
Erdélyi-Kober, Grünwald-Letnikov, Marchand and
Riesz are just a few to name [6, 10, 11, 12, 13, 14].
The most usual formula for taking fractional deriva-
tives is the Riemann-Liouville formula(

d
dx

)ν

F(x) =
1

Γ(−ν)

∞∫
0

dtF(t)(x− t)−1−ν.

Here
Reν < 0.

It is possible to find a solution of fractional deriva-
tives, but there are some problems. Because Gamma
function Γ(x) takes infinity value at the point
(0,−1,−2, ...). So we study fractional derivatives
by means of infinite integer-order differentials which
allow us to derive some universal formulas for taking
fractional derivatives for wide classes of functions.

We used two general formulas to derive new uni-
versal formulas.
The first general formula [1](

d
dx

)− 1
ν

F(x) =
ν

Γ
( 1

ν

) ∞∫
0

dt · e−tν d
dx · F(x). (1)
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The second general formula [1](
d

dx

)− 1
ν

· F(x) =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
F(x). (2)

II. USEFUL FORMULAS

The following formulas were used:

exp
[
−tν d

dx

]
= 1− tν d

dx
+

1
2!

t2ν d2

dx2 − . . . , (3)

sin
(

t
d

dx

)
= t

d
dx
− 1

3!
t3 d3

dx3 +
1
5!

t5 d5

dx5 . . . , (4)

cos
(

t
d

dx

)
= 1− 1

2!
t2 d2

dx2 +
1
4!

t4 d4

dx4 . . . , (5)

the following formulas (6, 7) adopted from [2]

∞∫
0

costνdt =
Γ
( 1

ν

)
ν
· cos

( π

2ν

)
, (6)

∞∫
0

sin tνdt =
Γ
( 1

ν

)
ν
· sin

( π

2ν

)
, (7)

e−x = 1− x +
x2

2!
− x3

3!
+ · · · =

∞

∑
n=0

(−1)n xn

n!
.

(8)
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Formula (8) was transformed to the complex plane ξ
in the integral form [2] as shown:

e−x =
1
2i

−β−i∞∫
−β+i∞

dξ
xξ

sin(πξ) · Γ(1 + ξ)
(9)

here −1 < β < 0.

III. DERIVATION OF THE NEW
FORMULAS

A. F(x) = sin x

Let F(x) = sin x, using the first general formula (1)
given as

(
d

dx

)− 1
ν

sin x =
ν

Γ
( 1

ν

) ∞∫
0

dt · e−tν d
dx · sin x. (10)

By using above formula (3) and simple calculations
given as

e−tν d
dx = 1− tν d

dx
+ t2ν d2

dx2 · 2!
− t3ν d3

dx3 · 3!
+

t4ν d4

dx4 · 4!
− · · · .

Substituting above decomposition in equation (10) is
the following form

(
d

dx

)− 1
ν

sin x =
ν

Γ
( 1

ν

) ∞∫
0

dt×

sin x
(

1− tν d
dx

+ t2ν d2

dx2 · 2!
− t3ν d3

dx3 · 3!
+

t4ν d4

dx4 · 4!
− t5ν d5

dx5 · 5!
+ · · ·

)
. (11)

Let’s calculate the derivatives of sin x function as
shown as

sin′ x = cos x sin′′ x = − sin x sin′′′ x = − cos x

sin′′′′ x = sin x sin′′′′′ x = cos x · · · .

Now substituting above derivatives of sin x function
in formula (4) given as

sin x− tν cos x− t2ν sin x · 1
2!

+ t3ν cos x · 1
3!
+

t4ν sin x · 1
4!
− t5ν cos x · 1

5!
+ · · · .

Let’s do some reaggregation for sin x, cos x given as
the following form

sin x
(

1− t2ν · 1
2!

+ t4ν · 1
4!
− · · ·

)
−

cos x
(

tν − t3ν · 1
3!

+ t5ν · 1
5!
− · · ·

)
.

Here(
1− t2ν · 1

2!
+ t4ν · 1

4!
− · · ·

)
= cos tν

and (
tν − t3ν · 1

3!
+ t5ν · 1

5!
− · · ·

)
= sin tν

after some transformations and calculations, equation
(11) as shown below

(
d

dx

)− 1
ν

sin x =
ν

Γ
( 1

ν

)
sin x

∞∫
0

cos tνdt−

cos x
∞∫

0

sin tνdt

 . (12)

By using above formula (6) and (7) simplifies to

(
d

dx

)− 1
ν

sin x =
ν

Γ
( 1

ν

) [sin x ·
Γ
( 1

ν

)
ν
×

cos
( π

2ν

)
− cos x ·

Γ
( 1

ν

)
ν
· sin

( π

2ν

)]
(13)

and let’s eliminate operations given as the following
form

(
d

dx

)− 1
ν

sin x = sin x · cos
π

2ν
− cos x · sin

π

2ν
.

(14)
From the equation (10) we obtain a universal formula
as show in (15)

(
d

dx

)ρ

sin x = sin
(

x +
π

2
ρ
)

(15)

here ρ -is arbitrary order.
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B. F(x) = cos x

Note that F(x) = cos x, then using the first general
formula (1) and to calculate same as (A) shown as(

d
dx

)− 1
ν

cos x =
ν

Γ
( 1

ν

) ∞∫
0

dt · e−tν d
dx · cos x

= cos
(

x− π

2ν

)
. (16)

From equation (16) we obtain a universal formula as
show in (17)(

d
dx

)ρ

cos x = cos
(

x +
π

2
ρ
)

(17)

here ρ -is arbitrary order.

C. Examples

1. ν = 1
d

dx
sin x = cos x

d
dx

cos x = − sin x

2. ν = −1(
d

dx

)−1

sin x = − cos x =
∫

sin(x)dx(
d

dx

)−1

cos x = sin x =
∫

cos(x)dx

3. ν =
1
2(

d
dx

) 1
2

sin x =

√
2

2
(sin x + cos x)

(
d

dx

) 1
2

cos x =

√
2

2
(cos x− sin x)

4. ν = −1
2(

d
dx

)− 1
2

sin x =

√
2

2
(sin x− cos x)

(
d

dx

)− 1
2

cos x =

√
2

2
(cos x + sin x)

5. ν =
3
2(

d
dx

) 3
2

sin x =

√
2

2
(cos x− sin x)

(
d

dx

) 3
2

cos x =

√
2

2
(− cos x− sin x)

6. ν = −3
2(

d
dx

)− 3
2

sin x = −
√

2
2

(sin x + cos x)

(
d

dx

)− 3
2

cos x =

√
2

2
(sin x− cos x)

7. ν =
1
4(

d
dx

) 1
4

sin x = sin x · cos
π

8
+ cos x · sin

π

8(
d

dx

) 1
4

cos x = cos x · cos
π

8
− sin x · sin

π

8

8. ν = −1
4(

d
dx

)− 1
4

sin x = sin x · cos
π

8
− cos x · sin

π

8(
d

dx

)− 1
4

cos x = cos x · cos
π

8
+ sin x · sin

π

8

D. Properties of the Fractional Derivatives

d
dx

(
d

dx

)−1

≡
(

d
dx

)−1 [ d
dx

]
d

dx
·
(

d
dx

)− 1
2

≡
(

d
dx

) 1
2

(
d

dx

) 1
4

·
(

d
dx

) 1
4

· sin x ≡
(

d
dx

) 1
2

sin x

(
d

dx

) 1
4

·
(

d
dx

) 1
4

· cos x ≡
(

d
dx

) 1
2

cos x

(
d

dx

)− 1
4

·
(

d
dx

)− 1
4

· sin x ≡
(

d
dx

)− 1
2

sin x

(
d

dx

)− 1
4

·
(

d
dx

)− 1
4

· cos x ≡
(

d
dx

)− 1
2

cos x

E. F(x) = sin ax

Note that F(x) = sin ax, then using the first general
formula (1) and to calculate same as (A) shown as(

d
dx

)− 1
ν

sin ax =
ν

Γ
( 1

ν

) ∞∫
0

dt · e−tν d
dx · sin ax.

(18)(
d

dx

)− 1
ν

sin ax = a−
1
ν sin

(
ax− π

2ν

)
.
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From equation (18) we obtain a universal formula as
show in (19)(

d
dx

)ρ

sin ax = aρ sin
(

ax +
π

2
ρ
)

(19)

here ρ -is arbitrary order.

F. F(x) = cos ax

Note that F(x) = cos ax, then using the first general
formula (1) and to calculate same as (A) shown as(

d
dx

)− 1
ν

cos ax =
ν

Γ
( 1

ν

) ∞∫
0

dt · e−tν d
dx · cos ax.

(20)(
d

dx

)− 1
ν

cos ax = a−
1
ν cos

(
ax− π

2ν

)
.

From equation (20) we obtain a universal formula as
show in (21)(

d
dx

)ρ

sin ax = aρ cos
(

ax +
π

2
ρ
)

(21)

here ρ -is arbitrary order.

G. F(x) = eax

Note that F(x) = eax, then using the second general
formula (2) and to calculate same as (A) shown as(

d
dx

)− 1
ν

· eax =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt sin
(

tν d
dx

)
eax.

(22)(
d

dx

)− 1
ν

· eax = a−
1
ν eax.

From equation (22) we obtain a universal formula as
show in (23) (

d
dx

)ρ

eax = aρeax (23)

here ρ -is arbitrary order.

H. F(x) = e−ax

Note that F(x) = e−ax, then using the second general
formula (2) and to calculate same as (A) shown as(

d
dx

)− 1
ν

· e−ax =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt sin
(

tν d
dx

)
e−ax.

(24)

(
d

dx

)− 1
ν

· e−ax = −a−
1
ν e−ax.

From equation (24) we obtain a universal formula as
show in (25)

(
d

dx

)ρ

e−ax = −aρe−ax (25)

here ρ -is arbitrary order.

I. F(x) = ax

Note that F(x) = ax, then using the second general
formula (2) and to calculate same as (A) shown as

(
d

dx

)− 1
ν

· ax =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt · sin
(

tν d
dx

)
ax.

(26)(
d

dx

)− 1
ν

· ax = (ln a)−
1
ν ax, a > 1.

From equation (26) we obtain a universal formula as
show in (27)

(
d

dx

)ρ

ax = (ln a)ρax, a > 1 (27)

here ρ -is arbitrary order.

J. F(x) = sh ax

Note that F(x) = sh ax, then using the second gen-
eral formula (2) and to calculate same as (A) shown
as

(
d

dx

)− 1
ν

· sh ax =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
sh ax = a−

1
ν ch ax. (28)

From equation (28) we obtain a universal formula as
show in (29)

(
d

dx

)ρ

sh ax = aρ ch ax (29)

here ρ -is arbitrary order.
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K. F(x) = ch ax

Note that F(x) = ch ax, then using the second gen-
eral formula (2) and to calculate same as (A) shown
as (

d
dx

)− 1
ν

· ch ax =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
ch ax = a−

1
ν sh ax. (30)

From equation (30) we obtain a universal formula as
show in (31) (

d
dx

)ρ

ch ax = aρ sh ax (31)

here ρ -is arbitrary order.

L. F(x) = 1
x

Note that F(x) = 1
x , substituting in formula (2) is

the following form

(
d

dx

)− 1
ν

· 1
x
=

ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt sin
(

tν d
dx

)
1
x

.

(32)
By using above formula (4) and simple calculations
gives

sin
(

tν d
dx

)
= tν d

dx
− t3ν · 1

3!
· d3

dx3+

t5ν · 1
5!
· d5

dx5 − · · · .

Now let’s calculate the derivatives of 1
x and it takes

the following form(
d

dx

)′ 1
x
= − 1

x2 ,
(

d
dx

)′′ 1
x
=

2
x3 ,

(
d

dx

)′′′ 1
x
= − 6

x4 ,

(
d

dx

)′′′′ 1
x
=

24
x5 ,

(
d

dx

)′′′′′ 1
x
= −120

x6 · · · .

Now let’s substituting derivatives of 1
x in equation

(33) and it takes the following form

(
d

dx

)− 1
ν

· 1
x
=

ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

1
x

(
tν d

dx
− t3ν · 1

3!
· d3

dx3 + t5ν · 1
5!
· d5

dx5 − · · ·
)

(33)
and let’s do some transformations

1
x

(
tν d

dx
− t3ν · 1

3!
· d3

dx3 + t5ν · 1
5!
· d5

dx5 − · · ·
)
=

−tν · 1
x2 + t3ν · 1

3!
· 3!

x4 − t5ν · 1
5!
· 5!

x6 + · · · =

− 1
x2

∞

∑
n=0

(−1)n · t2nν+ν

x2n . (34)

Substituting equation (34) in equation (33) is the fol-
lowing form(

d
dx

)− 1
ν

· 1
x
=

ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

(
− 1

x2

∞

∑
n=0

(−1)n · t2nν+ν

x2n

)
. (35)

If denote N(G) = ν
Γ( 1

ν ) sin π
2ν

and go to the complex

plane ξ and to present equation (34) in the integral
form:

− 1
x2

∞

∑
n=0

(−1)n · t2nν+ν

x2n = lim
ε→0

∞∫
ε

dt · t2νξ+ν

and substituting above equation in (33) is the follow-
ing form

(
d

dx

)− 1
ν

· 1
x
= −N(G)

x2 · 1
2i

−β−i∞∫
−β+i∞

dξ×

1
sin πξ

· x−2ξ · lim
ε→0

∞∫
ε

dt · t2νξ+ν. (36)

Here

lim
ε→0

∫ ∞

ε
dt · t2νξ+ν = − lim

ε→0

ε2νξ + ν + 1
2νξ + ν + 1

,

substituting above equation in (36) is the following
form (

d
dx

)− 1
ν

· 1
x
=

N(G)

x2 · 1
2i

−β−i∞∫
−β+i∞

dξ×

1
sin πξ

· x−2ξ · lim
ε→0

t2νξ+ν+1

2νξ + ν + 1
. (37)
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Further, we calculate residue at the point

ξ = − (ν + 1)
2ν

,

and here
β−i∞∫

β+i∞

dξ = 2πi.

Substituting above equation in (37) is the following
form(

d
dx

)− 1
ν

· 1
x
=

N(G)

x2 · 1
2i

2πi
1

sin πξ
· x−2ξ×

1
2ν

(
ξ + ν+1

2ν

)(
ξ + ν+1

2ν

) =
N(G)

x2 · π

sin πξ
· x−2ξ · 1

2ν
. (38)

Lets do some calculations

x−2ξ = x−2
(
− (ν+1)

2ν

)
= x

ν+1
ν ,

sin πξ = sin π ·
(
− (ν + 1)

2ν

)
= − cos

π

2ν
.

Lets back that notaion N(G) = ν
Γ( 1

ν ) sin π
2ν

it takes

the following form(
d

dx

)− 1
ν

· 1
x
=

1
sin π

2ν

ν

Γ
( 1

ν

)×
1
x2 ·

π

− cos π
2ν

· 1
2ν
· x ν+1

ν . (39)

Here

−
(

sin
π

2ν
· cos

π

2ν

)
= −1

2
· sin

π

ν

and after some transformations equation (39) as
shown below(

d
dx

)− 1
ν

· 1
x
=

π

− 1
2 · sin π

ν

· 1
Γ
( 1

ν

) · 1
2
· x ν+1

ν −2.

Here [2]

− sin
π

ν
Γ
(

1
ν

)
= − π

Γ
(
1− 1

ν

) ,

(
d

dx

)− 1
ν

· 1
x
= −

π · Γ
(
1− 1

ν

)
π

· x 1−ν
ν (40)

From equation (32)we obtain a universal formula as
show in (41)(

d
dx

)− 1
ν
(

1
x

)
= −Γ

(
1− 1

ν

)
· x 1−ν

ν (41)

here ν -is arbitrary order.

M. F(x) = 1
x2

Note that F(x) = 1
x2 , then using the second general

formula (2) and to calculate same as (L) shown as(
d

dx

)− 1
ν

· 1
x2 =

ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
1
x2 = Γ

(
2− 1

ν

)
x

1
ν−2. (42)

From the equation (42) we obtain a universal formula
as show in (43)(

d
dx

)− 1
ν
(

1
x2

)
= Γ

(
2− 1

ν

)
x

1
ν−2 (43)

here ν -is arbitrary order.

N. F(x) = ln x

Note that F(x) = ln x, then using the second general
formula (2) and to calculate same as (L) shown as(

d
dx

)− 1
ν

· ln x =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
ln x = Γ

(
−1

ν

)
x

1
ν . (44)

From the equation (44) we obtain a universal formula
as show in (45)(

d
dx

)− 1
ν

ln x = Γ
(
−1

ν

)
x

1
ν (45)

here ν -is arbitrary order.

O. F(x) =
√

x

Note that F(x) =
√

x, then using the second general
formula (2) and to calculate same as (L) shown as(

d
dx

)− 1
ν

·
√

x =
ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)√
x = 2

1
ν · x 2+ν

2ν

[
−2 + 2ν

ν
− 1
]

!!.

(46)
From the equation (46) we obtain a universal formula
as show in (47)(

d
dx

)− 1
ν √

x = 2
1
ν · x 2+ν

2ν

[
−2 + 2ν

ν
− 1
]

!!

(47)
here ν -is arbitrary order.
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P. F(x) = 1√
x

Note that F(x) = 1√
x , then using the second general

formula (2) and to calculate same as (L) shown as(
d

dx

)− 1
ν

· 1√
x
=

ν

Γ
( 1

ν

)
sin π

2ν

∞∫
0

dt×

sin
(

tν d
dx

)
1√
x
= −2

1
ν · x 2−ν

2ν

[
−2 + 2ν

ν
+ 1
]

!!.

(48)
From the equation (48) we obtain a universal formula
as show in (49)

(
d

dx

)− 1
ν 1√

x
= −2

1
ν · x 2−ν

2ν

[
−2 + 2ν

ν
+ 1
]

!!

(49)
here ν -is arbitrary order.

IV. APPLICATIONS OF THE NEW
FORMULAS

Newton’s second law tells us that

F = ma = m · d2x
dt2 = mä = −kx, (50)

m
d2x
dt2 + kx = 0⇒ d2x

dt2 +
k
m

x = 0. (51)

Here

ω0 =

√
k
m

, (52)

d2x
dt2 + ω2

0x = 0. (53)

This is Newton’s equation for the harmonic oscilla-
tion.

In a previous sections we obtained new formulas
for taking fractional derivatives( 15, 17, 19, 21, 23, 25,
27, 29, 31, 41, 43, 45, 47, 49). These formulas allow
us to construct many different fractional differential
equations describing concrete physical processes like
the harmonic oscillation, left-and right-moving waves
and so on. These particular equivalent equations are:

dρ1

dtρ1
a(ωt) + ω2 dρ2

dtρ2
a(ωt) = 0. (54)

1. If ρ1 = 2, ρ2 = 0 we have

d2

dt2 a(ωt) + ω2a(ωt) = 0. (55)

Here a(ωt) = sin(ωt)

d2

dt2 sin(ωt) = −ω2 sin ωt,

−ω2 sin ωt + ω2 sin ωt = 0.

This equation showed to materialise when integer
derivatives give harmonic oscillator solution like

a1(ωt) = A sin(ωt + ϕ),

a2(ωt) = A cos(ωt + ϕ).

Now we consider fractional derivatives.

2.(
d
dt

) 1
2

ci(ωt)+ω

(
d
dt

)− 1
2

ci(ωt) =
√

2ωci(ωt)

(56)
Here ci(ωt) = sin(ωt).

Firstly let’s calculate derivatives of sin(ωt)
1
2 and

sin(ωt)−
1
2 functions were the following forms(

d
dt

) 1
2

sin(ωt) = ω
1
2 · sin

(
ωt +

π

4

)
=

√
ω
(

sin ωt · cos
π

4
+ cos ωt · sin

π

4

)
.(

d
dt

) 1
2

sin(ωt) =
√

2ω

2
(sin ωt + cos ωt)

and(
d
dt

)− 1
2

sin(ωt) = ω−
1
2 · sin

(
ωt− π

4

)
=

1√
ω

(
sin ωt · cos

π

4
− cos ωt · sin

π

4

)
.

(
d
dt

)− 1
2

sin(ωt) =
√

2
2
√

ω
(sin ωt− cos ωt) .

Substituting above equations in (56) is the following
form √

2ω

2
(sin ωt + cos ωt) +

ω

( √
2

2
√

ω
(sin ωt− cos ωt)

)
= sin ωt

√
2ω.

(57)
Here

√
2ω - coefficient depends on derivatives order.

Now, let’s check fractional derivatives of sin ωt
satisfying equation (54)

√
2ω

2
(sin ωt + cos ωt) +
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ω

( √
2

2
√

ω
(sin ωt− cos ωt)

)
=
√

2ω sin ωt.

(58)
Let’s do elementary calculations

√
2ω sin ωt +

√
2ω cos ωt

2
+

ω
√

2 sin ωt−ω
√

2 cos ωt
2
√

ω
=
√

2ω sin ωt.

After some elementary calculations as shown as

2ω
√

2 sin ωt− 2ω
√

2 sin ωt = 0.

It showed us when calculate fractional derivatives it
satisfying Newton’s equations, harmonic oscillator
solution like

c1(ωt) = A sin(ωt + ϕ),

c2(ωt) = A cos(ωt + ϕ).

Now we consider other fractional derivatives .

3. (
d
dt

) 3
2

di(ωt) + ω3
(

d
dt

)− 3
2

di(ωt) =

−ω
√

2ωdi(ωt) (59)

let’s repeat the calculations

d1(ωt) = A sin(ωt + ϕ),

d1(ωt) = A cos(ωt + ϕ).

Now we consider other fractional derivatives.

4. (
d
dt

) 1
4

ei(ωt) +
√

ω

(
d
dt

)− 1
4

ei(ωt) =

2ω
1
4 cos

π

8
ei(ωt) (60)

let’s repeat the calculations

e1(ωt) = A sin(ωt + ϕ),

e1(ωt) = A cos(ωt + ϕ).

Now we consider other fractional derivatives.

5.

√
2ω

(
d
dt

)− 1
2

ki(ωt)−ω

(
d
dt

)−1

ki(ωt) = ki(ωt)

(61)
let’s repeat the calculations

k1(ωt) = A sin(ωt + ϕ),

k1(ωt) = A cos(ωt + ϕ).

We see that equations (54)-(61) describe the harmonic
oscillation process. In the usual traditional case this
oscillation satisfies Newton’s equation

m
d2x(t)

dt2 = −kx(t)⇒ ẍ(t) + ω2x(t) = 0

solution of which is

x(t) = A sin(ωt + ϕ).

For left- and right- moving waves f (x − vt) and
f (x + vt) one can change notation in previous for-
mulas:

t→ x, ω → 1, ωt→ x− vt or x + vt,

a(ωt)⇒ f (x− vt), f (x + vt)
or F = A1 f (x− vt) + A2 f (x + vt),

Then all equations (54)-(61) have solutions

Ai sin(x− vt) and Aj cos(x− vt)
or Ak sin(x + vt) and An cos(x + vt)

and their linear combinations like

Ai sin(x− vt) + Ak sin(x + vt)

or
Aj cos(x− vt) + An cos(x + vt)

so on.
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V. RESULTS

Finally we found universal formulas for taking frac-
tional derivatives.

1. (
d

dx

)ρ

sin x = sin
(

x +
π

2
ρ
)

here ρ -is any arbitrary number.

2. (
d

dx

)ρ

cos x = cos
(

x +
π

2
ρ
)

3. (
d

dx

)ρ

sin ax = aρ sin
(

ax +
π

2
ρ
)

4. (
d

dx

)ρ

cos ax = aρ cos
(

ax +
π

2
ρ
)

5. (
d

dx

)ρ

eax = aρeax

6. (
d

dx

)ρ

ax = (ln a)ρax, a > 1

7. (
d

dx

)ρ

e−ax = −aρe−ax

8. (
d

dx

)ρ

shax = aρchax

9. (
d

dx

)ρ

chax = aρshax

10. (
d

dx

)− 1
ν
(

1
x

)
= −Γ

(
1− 1

ν

)
· x 1−ν

ν

here ν -is any arbitrary number.

11. (
d

dx

)− 1
ν

ln x = Γ
(
−1

ν

)
x

1
ν

12. (
d

dx

)− 1
ν
(

1
x2

)
= Γ

(
2− 1

ν

)
x

1
ν−2

13. (
d

dx

)− 1
ν √

x = 2
1
ν · x 2+ν

2ν

[
−2 + 2ν

ν
− 1
]

!!

14. (
d

dx

)− 1
ν 1√

x
= −2

1
ν · x 2−ν

2ν

[
−2 + 2ν

ν
+ 1
]

!!

VI. CONCLUSION

We studied Newton’s equations for the harmonic os-
cillations using newly generated formula derived in
our study and we conclude that Newton’s equations
are not limited to integers, but can be well presented
using fractional derivatives.
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