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Abstract

Given the increasing popularity of inflation targeting in the OECD coun-

tries the business cycle volatility of inflation substantially decreased in the

past four decades. But due to the absence of corresponding decline in the

seasonal cycle volatility the share of seasonality in the total volatility has

increased.
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1 Introduction

It is common for empirical studies of inflation to either work with seasonally ad-

justed data or assume there is no seasonality. For example, Cecchetti and Debelle

(2006) and Altansukh, Becker, Bratsiotis and Osborn (2017) use X-12 seasonal

adjustment procedure before analysing CPI inflation in 13 OECD countries, while

Ngai and Tenreyro (2014) assume there is no seasonality in US CPI. Eisenstat

and Strachan (2016) use official seasonally adjusted US data but such data are

available only for US and Germany (Cecchetti and Debelle, 2006). The OECD

Statistics note that ”the majority of OECD countries do not produce seasonally

adjusted CPIs because seasonal effects are not generally significant enough to war-

rant it”. On the other hand, Bryan and Cecchetti (1995) find the seasonal price

movements in the US have become more prominent in the relatively stable infla-

tion environment that has prevailed since 1982. In this paper we extend Bryan

and Cecchetti’s (1995) thesis to 13 OECD countries using the recent developments

in the structural break tests of unknown number and timing.

Barsky and Miron (1989) document little seasonality in US inflation while Os-

born (1990) find UK prices having slightly higher seasonal fluctuations than in

the US. Beaulieu and Miron (1992) point to an evidence that shows seasonals in

prices are small in 21 countries they study. But these studies assume not only

constant volatility in the non-seasonal component but also constant seasonal pat-

terns. Ignoring structural changes can reduce seasonal share in the total volatility

in the former case and will reduce the volatility of the seasonal components in the

latter, since the standard deviation of fitted seasonal dummies are used to used

to measure the seasonal volatility in these studies. Changing monetary policy and
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economic structures, shifts in preferences, technological improvements, changes in

business environment due to the globalization, and increase in competition from

both domestic and foreign players can be behind such changes1.

Bataa et al. (2014) propose an iterative decomposition that tests and accounts

for multiple structural breaks in the mean, seasonality, dynamics and conditional

volatility, while also accounting for outliers. They apply the methodology to G7

and Euro area CPI monthly inflation and document mean and seasonality breaks

for all countries and, accounting for these the persistence also changes. Most

interestingly they show that volatility reductions are widespread in the early to

mid 1980s, with some countries exhibiting increases from 1999 onwards. In their

study of the globalization of inflation Altansukh et al. (2017) reject the null

hypothesis of constant volatility in the non-seasonal component of inflation for 13

OECD countries2.

2 Methodology

We adopt Bataa et al. (2014) methodology by explicitly using its volatility decom-

position implications. To be specific, consider decomposing an observed seasonal

series Yt into components capturing the level (Lt), deterministic seasonality (St),

1See Beaulieu and Miron (1996) and Cecchetti, Kashyap and Wilcox (1997), and Wen (2002),
among others, for formal models that explicitly considers seasonality in macroeconomy.

2See Eisenstat and Strachan (2016) and references therein for Bayesian approach to modelling
US inflation volatility.
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outliers (extreme observations) (Ot) and dynamics (yt):

Yt = Ot + St + Lt + yt (1)

St =
s∑

l=1

δk1,lDlt, t = Tk1−1 + 1, . . . , Tk1 ; k1 = 1, . . . ,m1 + 1 (2)

Lt = µk2 , t = Tk2−1 + 1, . . . , Tk2 ; k2 = 1, . . . ,m2 + 1 (3)

yt =

p∑
i=1

φk3,iyt−i + ut, t = Tk3−1 + 1, . . . , Tk3 ; k3 = 1, . . . ,m3 + 1 (4)

σ2
u,t = var(ut), t = Tk4−1 + 1, . . . , Tk4 ; k4 = 1, . . . ,m4 + 1 (5)

σ2
S,t =

s∑
l=1

δ2k1,lσ
2
Dlt

+ 2
s∑

l=1

s∑
i=l+1

δk1,lδk1,iσDlt,Dit

t = Tk1−1 + 1, . . . , Tk1 ; k1 = 1, . . . ,m1 + 1 (6)

Sst =
σ2
St

σ2
ut

+ σ2
St

, t = Tk5−1 + 1, . . . , Tk5 ; k5 = 1, . . . ,m1 +m4 + 1 (7)

where mj denotes the number of breaks of type j that occur at observations Tkj

(kj = 1, . . . ,mj), with T0 = 0 and Tmj+1 = T (where T denotes the total sample

size), and for s seasons per year (s = 12 for monthly data), Dlt (l = 1, . . . , s)

are seasonal dummies equal to unity if the observation at time t falls in season l

and zero otherwise. Note that the coefficient δk1l represents the deviation of the

unconditional mean of Yt in the lth season (month) from the overall mean level

µk2 and, for identification purposes, we impose the restriction
∑s

j=1 δkll = 0 for all

seasonality regimes k1 = 1, . . . ,m1 + 1. Under the restriction that Ot = p = m1 =

m2 = m3 = m4 = 0; equations (1)-(5) collapse to the model used in Barsky and

Miron (1989), Osborn (1990), Beaulieu and Miron (1992) and Bryan and Cecchetti

(1995).

Testing and decomposition method and their trimming parameter specifications

are the same as in Bataa et al. (2014) hence the details are omitted to conserve
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space. Only difference is that we use conventional F test (at 5% significance

level) for seasonality before estimating (2) as it is not clear whether all inflation

components are indeed seasonal.

The assumption of deterministic seasonality is justified by the lack of seasonal

unit roots in CPI inflation (see Canova and Hansen, 1995 for the US, Osborn and

Sensier, 2009 for the UK and Narayan and Popp, 2011 for the G7). However if

there is stationary stochastic seasonality, this will be evidenced as quantitatively

important sth order autocorrelation in yt (Barsky and Miron, 1989 and Bataa et

al., 2014).

3 Data

We use monthly CPI aggregate, core, energy, and food inflation series from the

OECD Main Economic Indicators database but concentrate on the aggregate one in

this paper and provide the other results in the online Appendix. Our sample period

extends from January 1970 to December 2017 and includes Austria (AUT), Canada

(CAN), Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Italy

(ITA), Japan (JPN), Netherlands (NLD), Sweden (SWE) Swtitzerland (CHE), UK

(GBR) and USA. Hence our data are the same as that of Altansukh et al. (2017)

but our sample is 4 years longer and we also consider area-wide inflation for G7,

OECD Europe and OECD Total.
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4 Results

Our principal empirical results concerning the presence of structural breaks in

different characteristics of inflation and their implications for seasonal share in

total volatility are discussed in this section. Results for the mean, seasonality

and outliers are discussed first, followed by dynamics, volatility and increasing

seasonality role in inflation volatility.

4.1 Mean, seasonality and outlier components

Table 1 provides numerical results relating to the outer loop of Bataa et al. (2014)

procedure, specifically relating to mean, seasonality and outlier components. Sev-

eral interesting conclusions emerge. Firstly, mean breaks are detected for all thir-

teen countries consistent with their result. Indeed, all experience at least one mean

break in the first half of the 1980s, with inflation falling by more than half by the

end of 1985 compared to its value at the beginning of the sample (compare the

regime means). The high inflation levels of the 1970s, of course, reflect the global

price shocks of large oil price increases, while Goodfriend (2007) points to the

actions of the US Federal Reserve Chairman Paul Volker from 1979 onwards as

crucial for not only reducing US inflation, but also in showing other countries that

a central bank could successfully tackle inflation. It is beyond the scope of the

present article to investigate whether the substantial reductions in mean inflation

evident in Table 1 across all countries in the first half of the 1980s can be attributed

to the adoption of similar policies, nevertheless the effective concurrence of these

inflation declines is remarkable.

In a similar vein, it is notable that Austria, Canada, Denmark, Finland, France,
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Italy, Sweden, Switzerland, and the UK all experience further declines in the early

1990s, with all countries except Italy, then having inflation rates between 0.05%

and 0.22% a month. In the case of Italy, however, the decline in mean inflation is

somewhat delayed with its mean inflation converging to the others starting from

2008. Interestingly, in Switzerland the mean inflation from mid 2010 is negative,

which could be due to the fall in energy, rent and transport costs as a result of

lower oil prices.

The mean breaks dated for a number of countries in the early 1990s further

evidence the role of monetary policy for inflation. Specifically, the February 1991

break for Canada coincides with its date of adoption of inflation targeting, while

the June 1992 date for the UK is just prior to the event (inflation target announced

in October 1992). Altissimo et al. (2006) point out that 1990s breaks for countries

that adopted the euro may correspond to implementation of the nominal con-

vergence required by the Maastricht Treaty, which was signed in February 1992.

Although Germany does not experience any 1990s mean break, those for other

Euro area countries may be viewed as bringing their inflation levels into line with

those already experienced by Germany.

Overall, and in line with Altissimo et al. (2006), Cecchetti and Debelle (2006)

and others, Table 1 provides evidence that level shifts are an important feature of

the inflation process for these countries since 1970. These are relatively large in

magnitude and often associated with policy changes.

Table 1 also indicates that all countries experience at least one break in their

seasonal patterns, with these patterns altering in both the first half of 1980s and

late 1990s/early 2000s in Denmark, Canada, Japan, and Sweden, and with changes

in the 1990s and around 2000 for France and Germany. Austria, the Netherlands,
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Sweden and the UK have three seasonal breaks. Indeed, the close co-incidence of

the first two dates of the latter three countries is notable. Finland, Switzerland

and the US have only one seasonal breaks, the latter two countries’ breaks are

dated in early 2000s. The second change in seasonality for the UK dated in June

1992 in Table 1 is close to that found by Osborn and Sensier (2009) for the UK

retail price index and may be due to the timing of budgets being disrupted after

that year.

For some countries the seasonal standard deviation changes significantly across

regimes defined by the break dates and substantially different when ignoring the

breaks. For example, the seasonal variation was not so high in the US inflation but

it has almost tripled since 2000. When the break is ignored the standard deviation

of the seasonals is estimated to be 0.14. While for others the seasonal standard

deviation does not change much, suggesting a change in the seasonal patterns; see

November 1992 break for the UK.

Panel B of Table 1 also shows the seasonal R2. One striking feature is that once

the breaks are taken into account the seasonal R2s are very high but if they are

ignored these are estimated to be very low. This suggests that estimating seasonal

dummy model ignoring the breaks produces a model that essentially averages

seasonal dummy coefficients of different seasonal regimes and is inconsistent with

data, hence the low R2s.

The number of detected outliers varies between 1 for Austria, Canada, France,

Japan, the Netherlands, Switzerland and the US to six for Italy, see Table 1. The

dates of these aberrant observations are not shown in Table 1 to save space. Most

outliers are related to specific exogenous events such as tax changes, in particular

the introduction of the Canadian Goods and Services Tax in January 1991 or the
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introduction of the UK Council Tax in April 1991.

The AR lag lengths shown in Table 1 relate to the final iteration. In all itera-

tions, the AR order is selected using the HQ criterion3, with a lag of one adopted for

inference purposes when HQ selects zero lags. The residual correlograms4 suggest

that stationary stochastic seasonality might be present in Austria, the Netherlands

and Switzerland. However these would only suggest that the seasonal share in the

total volatility we discuss in the next section is a lower bound. Finally, Table 1

also shows the number of iterations required for convergence of the main loop of

our procedure. The procedure does not converge for Italy and Japan, so that the

final model is selected using the HQ criterion. For both countries the iterative

procedure cycles between two sets of break dates. These are very close in each

case, with no substantive difference between their implications.

4.2 Dynamics, volatility and seasonal share in total volatil-

ity

Turning to Table 2, it is notable that we find inflation dynamics to remain un-

changed from 1970 only for Canada, Germany, Japan, Sweden and the US. In-

deed, Canada and Sweden effectively has zero inflation persistence (estimated as

0.06 and 0.04 respectively), which is compatible with Table 1 indicating that no

AR component is required for the former. Although Germany and the US exhibit

some inflation persistence, they are relatively modest at 0.42 and 0.46 respectively.

Japan’s persistence is highest among these five ecountries. The one AR coefficient

break uncovered for Austria, the Netherlands, Switzerland, and the UK inflation

3The maximum number of lags considered is Pmax = integer[12 ∗ (T/100)1/4].
4Not provided, but available upon request.
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has an effect of decreasing persistence (measured as the sum of the AR coefficients),

while for Finland and France where two breaks are detected the persistence has

a U-shape. always very low after this break. It is note worthy that, in common

with other studies (including Levin and Piger, 2004; Cecchetti and Debelle, 2006),

our results imply that inflation persistence is only moderate when mean breaks

are taken into account.

The estimated dates of persistence declines range between 1985 and 1999, and

apparently show less cross-country communality than seen in the estimated dates

of mean breaks in Table 1. Nevertheless, to the extent that good monetary policy

was successful in reducing the level of inflation during the 1980s and 1990s, such

policy may also have (largely) eliminated inflation persistence.

Having taken into account the effects of multiple structural breaks in level, sea-

sonal and dynamic components as well as outliers through the model of equations

(1)-(4), Table 2 also provides evidence on changes in (conditional) inflation volatil-

ity. The volatility break dates are broadly consistent across countries, with most

countries experiencing such a break in the first half of the 1980s, corresponding

to the beginning of the Great Moderation. In all cases except Germany, there is

a close correspondence between the estimated date of the early 1980s decline in

mean inflation (Table 1) and a volatility decline. Improved monetary policy may

explain both characteristics, as monetary policy tightening can reduce inflation

expectations (Goodfriend, 2007), thereby reducing volatility alongside the level of

inflation.

However, there is also evidence that (at least for inflation) the Great Moder-

ation may have came to an end around the close of the century, with volatility

increases dated after 1999 for Canada, Italy, Japan and the US. Particularly note-
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worthy is the US, for which we find that (conditional) inflation volatility increasing

by 50%. Denmark shows a different pattern, with an early volatility decline (in

1981), followed by a further decline in 1990.

The convergence in the iteration between the autoregressive and volatility com-

ponent is relatively quick as can be seen from Panel C of Table 2.

Panel D reports the evolution of the seasonal share in inflation volatility. The

regimes are defined by the break dates in Panel Bs of Tables 1 and 2. The seasonal

share ignoring the breaks are reported in bracket. A striking feature here is that the

seasonal share has been increasing monotonically for all countries. This increase

is driven by either increases in seasonal standard deviations (Panel B of Table

1), or decreases in residual standard deviations (Panel B of Table 2), or both

changes. For some countries such ”seasonalization” is rather rapid. For example,

the seasonal share in the US inflation volatility is mere 0.07 prior to 1982, while

it has reached 0.66 after 2004.

This pattern of increased seasonal share is specifically strong for core inflation

and rather muted for energy and food price inflation (provided in the Appendix).
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5 Conclusion

We revisit Bryan and Cecchetti’s (1995) thesis that suggests the seasonal price

movements in the US have become more prominent in the relatively stable inflation

environment that has prevailed since 1982 to 13 OECD countries using the recent

developments in the structural break tests of unknown number and timing.

Our results show that the seasonal share in the total volatility has been in-

creasing monotonically for all countries with either increases in seasonal standard

deviations, or decreases in residual standard deviations, or both changes contribut-

ing toward such a trend.
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